These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Occurrence and Phenotypes of Pyrimethanil Resistance in Penicillium expansum from Apple in Washington State. Author: Caiazzo R, Kim YK, Xiao CL. Journal: Plant Dis; 2014 Jul; 98(7):924-928. PubMed ID: 30708837. Abstract: Penicillium expansum is the cause of blue mold in stored apple fruit. In 2010-11, 779 isolates of P. expansum were collected from decayed apple fruit from five packinghouses, tested for resistance to the postharvest fungicide pyrimethanil, and phenotyped based on the level of resistance. In 2010, 85 and 7% of the isolates were resistant to pyrimethanil in packinghouse A and B, respectively, where pyrimethanil had been used for four to five consecutive years. In 2011, pyrimethanil or fludioxonil was used in packinghouse A, and 96% of the isolates from the fruit treated with pyrimethanil were resistant but only 4% of the isolates from the fruit treated with fludioxonil were resistant to pyrimethanil, suggesting that fungicide rotation substantially reduced the frequency of pyrimethanil resistance. No pyrimethanil-resistant isolates were detected in 2010 in the three other packinghouses where the fungicide had been used recently on a small scale. However 1.8% of the isolates from one of the three packinghouses in 2011 were resistant to pyrimethanil. A significantly higher percentage of thiabendazole-resistant than thiabendazole-sensitive isolates were resistant to pyrimethanil. Of the pyrimethanil-resistant isolates, 37 to 52, 4 to 5, and 44 to 58% were phenotyped as having low, moderate, and high resistance to pyrimethanil, respectively. Fludioxonil effectively controlled pyrimethanil-resistant phenotypes on apple fruit but pyrimethanil failed to control phenotypes with moderate or high resistance to pyrimethanil and only partially controlled the low-resistance phenotype.[Abstract] [Full Text] [Related] [New Search]