These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus.
    Author: Luan Q, Chen C, Liu M, Li Q, Wang L, Ren Z.
    Journal: Plant Sci; 2019 Feb; 279():59-69. PubMed ID: 30709494.
    Abstract:
    The cucumber (Cucumis sativus L.), an economically important vegetable crop, is often infected by Pseudoperonospora cubensis (P. cubensis), which results in inhibited growth and reduced yield. WRKY transcription factors (TFs) play critical roles in plant disease resistance. However, little is known about the function of WRKY TFs in cucumber downy mildew resistance. In this study, we reported that CsWRKY50, a cucumber WRKY subgroup Ⅱc TF localized in the nucleus, plays an important role in cucumber defense responses to downy mildew. In addition, several putative cis-acting elements involved in abiotic stress responsiveness were also identified in the CsWRKY50 promoter. Expression analysis revealed that CsWRKY50 can be induced by P. cubensis infection, abiotic stress and diverse signaling molecules. The overexpression of CsWRKY50 in cucumber enhanced the resistance of the plant to the fungal pathogen P. cubensis. In addition, less ROS accumulated in 35S:CsWRKY50 transgenic plants infected by the pathogen due to the higher expression levels of antioxidant enzymes. Importantly, after P. cubensis infection, the transcript levels of several hormone-related defense genes were also upregulated in transgenic plants, including SA- and JA-responsive genes and SA-synthesis genes. Collectively, our results indicate that CsWRKY50 positively regulates cucumber disease resistance to P. cubensis via multiple signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]