These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment. Author: Jureczko M, Przystaś W. Journal: Ecotoxicol Environ Saf; 2019 May 15; 172():210-215. PubMed ID: 30710771. Abstract: Cytostatic drugs have become one of the greatest environmental threats. They occur in surface, ground and even drinking water. Their key emission sources are hospital effluents, municipal wastewater, as well as drug manufacturers and their effluents. These compounds are extremely stable in natural waters and they are not significantly removed during wastewater treatment, because they are resistant to biodegradation. The aim of this work was to establish possible negative effects of chosen cytostatics: bleomycin and vincristine on the three trophic levels of surface waters. A single agent acute toxicity test was conducted on representatives of the producer - an aquatic freshwater plant Lemna minor, the consumer - crustaceans Daphnia magna, and the decomposer - bacteria Pseudomonas putida. Binary mixture tests were performed according to the Concentration Addition, Response Additivity, and Independent Action models. Both substances had a different effect on the tested organisms; bleomycin could be classified as a very toxic, while vincristine as a toxic water pollutant. Half maximal effective concentration (EC50) values designed in the presented single agent acute toxicity studies are < 10 mg/L in all the tests with bleomycin as well as vincristine conducted on L. minor. In tests with vincristine performed on D. magna and P. putida EC50 > 100 mg/L. The highest toxicity is demonstrated by bleomycin towards the aquatic freshwater plant (EC50 = 0.2 mg/L). The binary mixture of the tested chemicals showed antagonistic effects of environmental concern.[Abstract] [Full Text] [Related] [New Search]