These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles.
    Author: Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O.
    Journal: Mikrochim Acta; 2019 Feb 02; 186(3):153. PubMed ID: 30712159.
    Abstract:
    An origami paper-based electrochemical immunoassay for C-reactive protein (CRP) detection is described. The assay integrates multiple steps of electrode modification into a single device. A graphene-modified screen-printed carbon electrode (G/SPCE) was employed to enhance sensitivity. Gold nanoparticles were first electrodeposited onto the G/SPCE, followed by a self-assembled monolayer of L-cysteine. The capture anti-CRP was then covalently immobilized on the modified electrode. CRP was quantified by measuring the changes in the charge-transfer resistance of the electrode by using hexacyanoferrate as the redox probe. Cyclic voltammetry and scanning electron microscopy were also applied to verify the successful modification of the electrode. Under optimal conditions, impedance increase in the 0.05-100 μg mL-1 CRP concentration range, and the limit of detection is 15 ng mL-1 (at S/N = 3). The immunoassay was successfully applied to the determination of CRP in a certified human serum sample. This method is simple, low-cost, portable and disposable. Graphical abstract An origami paper-based analytical device (oPAD) is described that integrates the multistep of electrode modification, immobilization and detection into a single device. The direct conjugation between the capture antibody and target molecule was allowed to use in this system. The C-reactive protein (CRP) concentration in serum samples was determined using electrochemical impedance spectroscopy.
    [Abstract] [Full Text] [Related] [New Search]