These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Author: Xiao M, Xie K, Dong X, Wang L, Huang C, Xu F, Xiao W, Jin M, Huang B, Tang Y. Journal: Anal Chim Acta; 2019 Apr 11; 1053():139-147. PubMed ID: 30712559. Abstract: The development of biosensors that are portable, low-cost, and quantitative has long been sought for rapid, on-site, and timely detection of avian influenza virus (AIV). In this study, an antibody-based Raman lateral flow immunoassay strip was developed to detect AIV H7N9. This LFIA strip used a novel core-shell structure material, AuAg4-ATP@AgNPs, as a Raman probe. An antibody specific for AIV and goat anti-mouse IgG antibody were immobilized on a nitrocellulose membrane as the test and control lines, respectively. Accumulation of antibody-virus-antibody-Raman probe complex at the test line could be visualized by the naked eye, and the Raman signal could be quantified using a portable Raman instrument. The testing process for the SERS-based LFIA strips could be completed in 20 min, which avoided the time-cost of current methods for AIV analysis. In our SERS-based biosensor, we estimated the limit of detection (LOD) for H7N9 to be 0.0018 HAU. This value is approximately three orders of magnitude more sensitive than the corresponding HA assays. When testing real sample, the results of the strip test were in accordance with those from real-time PCR testing. In conclusion, the SERS-based LFIA strip proposed in this study shows tremendous potential to detect targets quickly and sensitively using an elegantly simple method.[Abstract] [Full Text] [Related] [New Search]