These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recurrent Loss-of-Function Mutations Reveal Costs to OAS1 Antiviral Activity in Primates.
    Author: Carey CM, Govande AA, Cooper JM, Hartley MK, Kranzusch PJ, Elde NC.
    Journal: Cell Host Microbe; 2019 Feb 13; 25(2):336-343.e4. PubMed ID: 30713099.
    Abstract:
    Immune responses counteract infections but also cause collateral damage to hosts. Oligoadenylate synthetase 1 (OAS1) binds double-stranded RNA from invading viruses and produces 2'-5' linked oligoadenylate (2-5A) to activate ribonuclease L (RNase L), which cleaves RNA to inhibit virus replication. OAS1 can also undergo autoactivation by host RNAs, a potential trade-off to antiviral activity. We investigated functional variation in primate OAS1 as a model for how immune pathways evolve to mitigate costs and observed a surprising frequency of loss-of-function variation. In gorillas, we identified a polymorphism that severely decreases catalytic function, mirroring a common variant in humans that impairs 2-5A synthesis through alternative splicing. OAS1 loss-of-function variation is also common in monkeys, including complete loss of 2-5A synthesis in tamarins. The frequency of loss-of-function alleles suggests that costs associated with OAS1 activation can be so detrimental to host fitness that pathogen-protective effects are repeatedly forfeited.
    [Abstract] [Full Text] [Related] [New Search]