These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genome-wide identification of Toll-like receptors in the Chinese soft-shelled turtle Pelodiscus sinensis and expression analysis responding to Aeromonas hydrophila infection.
    Author: Liu T, Han Y, Chen S, Zhao H.
    Journal: Fish Shellfish Immunol; 2019 Apr; 87():478-489. PubMed ID: 30716519.
    Abstract:
    Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns play crucial roles in immune defence against pathogen invasion. Although recent advances in many species have reported the characterization and functional roles of TLRs in innate immunity, systematic knowledge of TLRs is still lacking in the Chinese soft-shelled turtle Pelodiscus sinensis. In this study, a genome-wide search was performed and identified 15 candidate PsTLR family genes in P. sinensis. Protein structure analysis revealed the conserved domain arrangements for these PsTLR proteins. Phylogenetic analysis indicated the evolutionary conservation of TLRs among various species. Additionally, a putative interaction network among PsTLR proteins was proposed and several functional partner proteins involved in TLR signalling pathway were predicted in P. sinensis. Expression profiling showed that these PsTLRs exhibited constitutive expression patterns in different tissues of P. sinensis. Moreover, several genes were highly expressed in the major immune organ spleen. Remarkably, the mRNA levels of PsTLR2-1, PsTLR4 and several TLR signalling molecules were significantly up-regulated in the spleen after Aeromonas hydrophila infection, indicating that PsTLRs and these genes responded to bacterial stress. These results provide rich information for the functional exploration of PsTLRs and will facilitate uncovering the molecular mechanisms underlying immune regulation in P. sinensis.
    [Abstract] [Full Text] [Related] [New Search]