These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Removal of phenanthrene and pyrene from contaminated sandy soil using hydrogen peroxide oxidation catalyzed by basic oxygen furnace slag.
    Author: Hu E, He Z, Nan X, Yuan Z, Li X.
    Journal: Environ Sci Pollut Res Int; 2019 Mar; 26(9):9281-9292. PubMed ID: 30721429.
    Abstract:
    Soil contamination with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in Northeast China, especially in the steel industrial area. The objective of this study was to evaluate the feasibility of using basic oxygen furnace (BOF) slag to activate the Fenton-like remediation of PAH-contaminated soil to achieve the objectives of "waste control by waste" and "resource recycling" in Chinese steel industry. The effects of BOF slag dosages, H2O2 concentrations, and exothermicity-driven evaporation were evaluated with respect to the removal efficiencies of phenanthrene (Phe) and pyrene (Pyr). Results indicated that PAH oxidation was proportional to the BOF slag dosages and was increased exponentially with H2O2 concentrations. Evaporation due to increasing temperature caused by exothermic reaction played an important role in total soil PAH losses. The sequential Fenton-like oxidation with a 3-times application of 15% H2O2 and the same BOF slag repeatedly used were able to remove 65.87% of Phe and 58.33% of Pyr, respectively. Soluble iron oxides containing in BOF slag were reduced, while amorphous iron oxide concentration remained stable during the repeated Fenton-like process. Column study mimics real field applications showing high removal efficiencies of Phe (36.05-83.20%) and Pyr (21.79-68.06%) in 30-cm depth of soil profile. The tests on soluble heavy metal concentrations after the reactions with high slag dosage or high H2O2 concentration confirmed that BOF slag would not cause heavy metal contamination. Consequently, BOF slag may provide an efficient way for enhancing the Fenton-like based remediation of heavily PAH-polluted soil with little risk on collateral heavy metal contamination. However, an external gas collection and purification equipment would be essential to eliminate the evaporated PAHs.
    [Abstract] [Full Text] [Related] [New Search]