These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and Characterization of Sustained Released Zinc Citrate Encapsulated in Whey Protein Nanoparticles.
    Author: Nour Soliman T, Fattah Hassan MAE.
    Journal: Pak J Biol Sci; 2018 Jan; 21(9):448-453. PubMed ID: 30724046.
    Abstract:
    BACKGROUND AND OBJECTIVES: The use of milk proteins for drug delivery is a new trend in functional foods and pharmaceutical. Recently, researchers have focused on the utilization of whey proteins in the preparation of nanoparticle and carrier for drugs and micronutrients. The objectives of this paper were to use whey proteins isolate (WPI) nanoparticles for the encapsulation of zinc citrate micronutrients and characterization of the prepared nanoparticles. MATERIALS AND METHODS: Nanoparticles were prepared from WPI with pH cycling and used for the encapsulation and sustained release of zinc citrate with three ratios (7, 14 and 28 mM) of zinc citrate per gram WPI. The particle size of the prepared nanoparticles was characterization and examined by transmission electron microscopy. The release of Zinc from the prepared nanoparticles was carried out using simulated gastric fluid at pH 1.2 using dialysis membranes, the amount of zinc citrate loaded whey protein (14.36 mg Zinc in 1 g WPI) within range of daily dose of zinc for healthy adults. RESULTS: The WPI nanoparticles were able to encapsulate efficiently zinc, with encapsulation efficiency that ranged between 99.79 and 96.31%. Zinc was highly released from the prepared nanoparticles in acidic media (pH 1.2). CONCLUSION: It can be concluded that WPI can be used as an effective vehicle for the protection and sustained release of zinc in food and pharmaceutical preparations.
    [Abstract] [Full Text] [Related] [New Search]