These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of induction hydroxy and hydrogen along with algal biodiesel blend in a CI engine: a comparison of performance and emission characteristics. Author: Rahman MA. Journal: Environ Sci Pollut Res Int; 2019 Apr; 26(10):9552-9560. PubMed ID: 30726540. Abstract: Gaseous fuel as a combustion enhancer with a pilot fuel offers significant benefits in improving engine efficiency. Hydrogen and hydroxy are the two most common gaseous fuels that have been widely investigated in the CI engine but which one performs best is still inconvenient. In this study, hydrogen and hydroxy were injected with BD40 (v/v) separately in a common diesel engine to compare the performance and emission characteristics of these fuels. Engine performance parameters include brake thermal efficiency (BTE) and brake-specific energy consumption (BSEC), and exhaust emissions include hydrocarbon (HC), CO, CO2, NOx, and smoke opacity. The induction of both hydroxy and hydrogen with BD40 has a positive effect on engine performance and emissions except NOx when compared to neat diesel fuel and BD40. The BTE of hydroxy-rich BD40 increased by 7.2% while BSEC reduced by 7.6% as compared to BD40 with hydrogen. The CO, HC, and smoke opacity of hydroxy-operated engine was found to be better than hydrogen-inducted engine. The NOx emission increased with the induction of both gaseous fuels and hydroxy-enriched BD40 produced 12.5% more emission than hydrogen-operated BD40 engine. Thus, more concisely, hydroxy-operated biodiesel engine performed better than hydrogen engine in terms of BTE, BSEC, CO, HC, and smoke opacity.[Abstract] [Full Text] [Related] [New Search]