These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with diesel, biodiesel, and its blends by using nanoadditive.
    Author: Vellaiyan S.
    Journal: Environ Sci Pollut Res Int; 2019 Apr; 26(10):9561-9573. PubMed ID: 30729437.
    Abstract:
    This article presents the results of investigations carried out to evaluate the improvement in combustion, performance, and emission characteristics of a diesel engine fueled with neat petro-diesel (PD), soybean biodiesel (SB), and 50% SB blended PD (PD50SB) by using carbon nanotube (CNT) as an additive. The acid-alkaline-based transesterification process with sodium hydroxide (NaOH) as a catalyst was applied to derive the methyl ester of SB. A mass fraction of 100 ppm CNT nanoparticle was blended with base fuels by using an ultrasonicator and the physiochemical properties were measured based on EN standards. The measured physiochemical properties are in good agreement with standard limits. The experimental evaluations were carried out under varying brake mean effective pressure (BMEP) conditions in a single-cylinder, four-stroke, and natural aspirated research diesel engine at a constant speed of 1500 rpm. The results reveal that the SB and its blend promote shorter ignition delay period (IDP) that is resulting in lower in-cylinder pressure (ICP) and net heat release rate (NHR) compared to PD. The SB and its blend increase the brake specific fuel consumption (BSFC), and reduce the brake specific energy consumption (BSEC) and exhaust gas temperature (EGT), due to lower heating value, and efficient combustion, respectively. As far as the emission characteristics are concerned, the SB and its blend promote lower magnitude of hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), and smoke emissions compared to PD except for oxides of nitrogen (NOx) emission. The CNT nanoparticle inclusion with base fuels significantly improves the combustion, performance, and emissions level irrespective of engine load conditions.
    [Abstract] [Full Text] [Related] [New Search]