These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: First Report of Little cherry virus 2 in Flowering and Sweet Cherry Trees in China.
    Author: Rao WL, Li F, Zuo RJ, Li R.
    Journal: Plant Dis; 2011 Nov; 95(11):1484. PubMed ID: 30731776.
    Abstract:
    Many viruses infect Prunus spp. and cause diseases on them. During a survey of stone fruit trees in 2008 and 2009, flowering cherry (Prunus serrulata) and sweet cherry (P. avium) trees with foliar chlorosis and reddening, stem deformity, and tree stunting were observed in private orchards in Anning and Fumin counties of Yunnan Province. Some sweet cherry trees with severe symptoms yielded small and few fruits and had to be removed. Leaf samples were collected from 68 flowering cherry and 30 sweet cherry trees, either symptomatic or asymptomatic, from private orchards and community gardens in Kunming and counties Anning, Chenggong, Fumin, Jinning, Ludian and Yiliang. Total nucleic acids were extracted with a CTAB extraction method and tested by reverse transcription (RT)-PCR assay using virus-specific primers. Little cherry virus 2 (LChV-2), Cherry virus A (CVA), Prunus necrotic ringspot virus (PNRSV), and Prune dwarf virus (PDV) were detected and infection rates were 68.4, 16.3, 9.2, and 7.1%, respectively. Infection of LChV-2 was common in all counties except Ludian where the orchards were healthy. Of 68 infected trees, 29 were found to be infected with LChV-2 and CVA, PDV or PNRSV. LChV-2 was detected in this study by RT-PCR using a pair of novel primers, LCV2-1 (5'-TTCAATATGAGCAGTGTTCCTAAC-3') and LCV2-4 (5'-ACTCGTCTTGTGACATACCAGTC-3'), in 59 flowering cherry (87%) and 8 sweet cherry (27%) trees, respectively. The primer pair was designed according to alignment of three available LChV-2 sequences (GenBank Nos. NC_005065, AF416335, and AF333237) to amplify the partial RNA-dependent RNA polymerase gene (ORF1b) of 781 bp. The amplicons of selected samples (Anning26 and Yiliang60) were sequenced directly and sequences of 651 bp (GenBank No. HQ412772) were obtained from both samples. Pairwise comparisons and phylogenetic analysis of the sequences show that the two isolates are identical to one another and share 92 to 96% at the amino acid (aa) sequence level to those of other isolates available in the GenBank database. The sequence data confirm that these isolates are a strain of LChV-2 and genetic variation among different strains is relatively high (2). Biological and serological assays are not available for the LChV-2 detection; therefore, the LChV-2 infections of these trees were further confirmed by RT-PCR using primer pair LCV2-5 (5'-TGTTTGTGTCATGTTGTCGGAGAAG-3') and LCV2-6 (5'-TGAATACCCGAGAACAAGGACTC-3'), which amplified the helicase domain (ORF1a) of ~451 bp. The amplicons from samples Anning26 and Yiliang60 were cloned and sequenced. The 408-bp sequences (excluding primer sequences) were 92 to 98% identical at the aa sequence level to those of other isolates, confirming again their viral origin. LChV-2 (genus Ampelovirus, family Closteroviridae) (4) has been associated with little cherry disease (LChD), a widespread viral disease of sweet and sour cherries (1,3). The virus is transferred between geographic areas mainly by propagated materials. Ornamental and sweet cherries are important crops in China and LChD has the potential to cause significant economic losses. Thus, certified clean stock should be used to establish new orchards. To our knowledge, this is the first report of LChV-2 in cherries in China. References: (1) N. B. Bajet et al. Plant Dis. 92:234, 2008. (2) W. Jelkmann et al. Acta Hortic. 781:321, 2008. (3) B. Komorowska and M. Cieslińska, Plant Dis. 92:1366, 2008. (4) M. E. Rott and W. Jelkmann. Arch. Virol. 150:107, 2005.
    [Abstract] [Full Text] [Related] [New Search]