These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methylome and transcriptome analyses of apple fruit somatic mutations reveal the difference of red phenotype. Author: Jiang SH, Sun QG, Chen M, Wang N, Xu HF, Fang HC, Wang YC, Zhang ZY, Chen XS. Journal: BMC Genomics; 2019 Feb 07; 20(1):117. PubMed ID: 30732560. Abstract: BACKGROUND: Fruit peel colour is an important agronomic trait for fruit quality. Cytosine methylation plays an important role in gene regulation. Although the DNA methylation level of a single gene is important to affect the phenotype of mutation, there are large unknown of difference of the DNA methylation in plant and its mutants. RESULTS: Using bisulfite sequencing (BS-Seq) and RNA-sequencing (RNA-Seq), we analysed three deep-red-skinned apple (Malus × domestica) mutants (Yanfu 3, YF3; Yanfu 8, YF8; Shannonghong, SNH) and their lighter-skinned parents (Nagafu 2, NF2; Yanfu 3, YF3; Ralls, RL) to explore the different changes in methylation patterns associated with anthocyanin concentrations. We identified 13,405, 13,384, and 10,925 differentially methylated regions (DMRs) and 1987, 956, and 1180 differentially expressed genes (DEGs) in the NF2/YF3, YF3/YF8, and RL/SNH comparisons, respectively. And we found two DMR-associated DEGs involved in the anthocyanin pathway: ANS (MD06G1071600) and F3H (MD05G1074200). These genes exhibited upregulated expression in apple mutants, and differences were observed in the methylation patterns of their promoters. These results suggested that both the regulatory and structural genes may be modified by DNA methylation in the anthocyanin pathway. However, the methylation of structural genes was not the primary reason for expression-level changes. The expression of structural genes may be synergistically regulated by transcription factors and methylation changes. Additionally, the expression of the transcription factor gene MYB114 (MD17G1261100) was upregulated in the deep-red-skinned apple. CONCLUSION: Through the analysis of global methylation and transcription, we did not find the correlation between gene expression and the DNA methylation. However, we observed that the upregulated expression of ANS (MD06G1071600) and F3H (MD05G1074200) in apple mutants results in increased anthocyanin contents. Moreover, MYB114 (MD17G1261100) is likely another regulatory gene involved in apple coloration. Our data provided a new understanding about the differences in formation of apple colour mutants.[Abstract] [Full Text] [Related] [New Search]