These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exciton binding energy and hydrogenic Rydberg series in layered ReS2. Author: Jadczak J, Kutrowska-Girzycka J, Smoleński T, Kossacki P, Huang YS, Bryja L. Journal: Sci Rep; 2019 Feb 07; 9(1):1578. PubMed ID: 30733485. Abstract: Unlike monolayers of transition metal dichalcogenides such as MoS2, which possess high in-plane symmetry, layered ReS2 exhibits reduced in-plane crystal symmetry with a distorted 1 T structure. This unique symmetry leads to anisotropic optical properties, very promising for light polarization devices. Here, we report on low temperature polarization-resolved emission and absorption measurements of excitons in ReS2 from bulk to monolayer. In photoluminescence and reflectivity contrast spectra we distinguish two strongly polarized excitons X1 and X2 with dipole vectors along different crystal directions, which persist from bulk down to monolayer. Basing on the PL and RC spectra of bulk crystals we determine the energy of the ground and first four excited states of both excitons, which follow the usual hydrogenic Rydberg series of energy levels of 3D excitonic states (En = Ry*/n2). From the numerical fit we estimate that the energy gap is direct and equal to 1671.7 meV and binding energy of X1 and X2 is equal to 117.5 and 86.6 meV, respectively. In magneto-PL spectra of bulk ReS2 up to B = 10 T, the energy shift of all the states is below 2 meV. On reducing the crystal thickness from bulk to monolayer the ground state experience a strong blue shift.[Abstract] [Full Text] [Related] [New Search]