These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Component effects of bioactive glass on corrosion resistance and in vitro biological properties of apatite-matrix coatings. Author: Su TR, Chu YH, Yang HW, Huang YF, Ding SJ. Journal: Biomed Mater Eng; 2019; 30(2):207-218. PubMed ID: 30741668. Abstract: BACKGROUND: Surface modification of metallic implants is critical for improving the clinical performance of the dental and orthopedic devices. Bioactive glasses exhibit different levels of cellular function and physicochemical behavior; however, there have been few previous studies on the effect of constituents of the bioactive glasses on the in vitro osteogenic activity and corrosion resistance of apatite-based coatings. OBJECTIVE: The objective of this work was to investigate the effect of SiO2, CaO, Na2O, and P2O5 on plasma-sprayed apatite coatings on Ti alloy substrates for tailoring the properties of implants making them suitable for clinical applications. METHODS: The corrosion potential and corrosion current of various coatings in simulated body fluid (SBF) were examined. MG63 cell proliferation, differentiation, and mineralization of plasma-sprayed apatite-matrix coatings were evaluated. RESULTS: The SiO2 and CaO-containing HA (HSC) coating had a higher corrosion potential than the other three coatings, while SiO2-containing HA (HS) coating displayed the highest corrosion current among all coatings. The effect of the oxides on cell functions followed the order SiO2 > CaO > P2O5 > Na2O in terms of cell attachment, proliferation, differentiation, and mineralization. CONCLUSIONS: The flexibility in oxide doping may allow for the tunable biological properties and corrosion-resistant ability of the apatite coatings.[Abstract] [Full Text] [Related] [New Search]