These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural development and assembly patterns of the root-associated microbiomes during phytoremediation.
    Author: Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R.
    Journal: Sci Total Environ; 2018 Dec 10; 644():1591-1601. PubMed ID: 30743871.
    Abstract:
    Successful in situ phytoremediation depends on beneficial interactions between roots and microbes. However, the assembly strategies of root-associated microbiome during phytoremediation are not well known. Here we investigated the assembly patterns of root-associated microbiomes during phytoremediation as well as its regulation by both plants and heavy metals. Plant cultivation and soil amendment increased microbial diversity and restructured microbial communities. Rhizo-compartmentalization was the largest source of variation in root-associated microbiomes, with endosphere being the most independent and exclusive compartment. Soil type explained a larger amount of microbiomes variation in bulk soil and rhizosphere than that in endosphere. A specific core root microbiome was likely to be selected by the metal-tolerant plant H. cannabinus, with Enterobacteriaceae, Pseudomonadaceae and Comamonadaceae which contain a large number of metal-tolerant and plant growth-promoting bacteria (PGPB) being the most abundant families. The root-associated microbial community tended to proceed a niche-assembled patterns and formed a smaller bacterial pool dominant by Proteobacteria, Actinobacteria and Chloroflexi under metal-contaminated conditions. Among these genera, potential metal-tolerant PGPB species have taken up the keystone positions in the microbial co-occurrence networks, revealing their key roles in metal-contaminated environment due to niche selection. We also detected a keystone functional group reducing metal bioavailability which might work as vanguards and devote to maintaining the structure and function of the whole microbial community. In conclusion, this study suggested a specific assembly pattern of root-associated microbiomes of the metal-tolerant plant H. cannabinus during phytoremediation, showing the directional selections of the associated microbiomes by both the plant and metal-contaminated conditions in such a system.
    [Abstract] [Full Text] [Related] [New Search]