These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication and physicochemical and antibacterial properties of ethyl cellulose-structured cinnamon oil oleogel: relation between ethyl cellulose viscosity and oleogel performance.
    Author: Zhang K, Wang W, Wang X, Cheng S, Zhou J, Wu Z, Li Y.
    Journal: J Sci Food Agric; 2019 Jun; 99(8):4063-4071. PubMed ID: 30761529.
    Abstract:
    BACKGROUND: Edible packaging and coating with natural antimicrobials such as essential oils is an emerging technology for the control of pathogen growth in meat products. This study aimed to explore ethyl cellulose (EC) of three viscosities for the structuring of cinnamon essential oil (CEO), and investigated the physicochemical properties of the resulting oleogel and its emulsion, as well as the corresponding antibacterial activity in model and actual environments (as in sausages). RESULTS: The network structure of CEO-EC oleogel was more compact with increased EC viscosity, thereby improving the binding capacity and stability of the oil. A positive correlation was found between EC viscosity and particle size of the CEO-EC emulsion. The 45 cP CEO-EC emulsion exhibited greatest antimicrobial activitiy in models with Escherichia coli (E. coli) O157:H7 (ATCC 700927) and Staphylococcus aureus (S. aureus) (ATCC 29213), as well as in sausage, with respect to total counts of mesophilic bacteria, psychrotrophs, lactobacilli, and pseudomonads. CONCLUSION: The CEO-EC oleogel has antibacterial activity, determined by the EC viscosity, that provide potential antibacterial protection for meat products and might be especially suitable for some traditional Chinese ready-to-eat sausages without strictly sealed packaging. © 2019 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]