These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid.
    Author: Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen HR.
    Journal: Mikrochim Acta; 2019 Feb 15; 186(3):189. PubMed ID: 30771002.
    Abstract:
    A nanocomposite is described that consists of TmPO4 and graphene oxide (GO) and is used to modify a glassy carbon electrode (GCE) to obtain a sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). GO and TmPO4 were synthesized via the Hummers method and by a hydrothermal method, respectively. The nanocomposite was characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical properties of the modified GCE were studied by electrochemical impedance spectroscopy and cyclic voltammetry. The good performance of the modified GCE results from the synergistic effects between GO with its good electrical conductivity and of TmPO4 as the electron mediator that accelerates the electron transfer rate. Compared to a bare GCE, a GO/GCE and a TmPO4/GCE, the GO/TmPO4/GCE exhibits three well-defined and separated oxidation peaks (at -0.05, +0.13 and + 0.26 V vs. SCE). Responses to AA, DA and UA are linear in the 0.1-1.0 mM, 2-20 μM and 10-100 μM concentration ranges, respectively. Graphical abstract Schematic presentation of a nanocomposite that consists TmPO4 and graphene oxide (GO) and is used to modify a glassy carbon electrode (GCE) to obtain a sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA).
    [Abstract] [Full Text] [Related] [New Search]