These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A "signal-on" photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol.
    Author: Qin X, Wang Q, Geng L, Shu X, Wang Y.
    Journal: Talanta; 2019 May 15; 197():28-35. PubMed ID: 30771936.
    Abstract:
    An ultrasensitive photoelectrochemical (PEC) aptasensor was designed for detection of chloramphenicol (CAP) based on graphene quantum dots-sensitized TiO2 nanotube arrays (GQDs/TiO2 NTs). The GQDs/TiO2 NTs nanohybrids were prepared by a coupling technique of linker molecule binding and electrophoretic deposition. It exhibited significantly enhanced visible-light photoelectrochemical activity, which was firstly employed as the photoactive material for fabrication of PEC aptasensor. As the recognition unit, the aptamers of CAP were immobilized on GQDs/TiO2 NTs photoelectrode via π-π stacking interaction between GQDs and the nucleobases of the aptamer. In this signal-on proposal, the aptasensor was used for the label-free analysis of CAP by monitoring the increase in photocurrent that resulted from the formation of aptamer-CAP bioaffinity complexes with ascorbic acid as an efficient electron donor for scavenging photogenerated holes. Under the optimized conditions, the aptasensor showed a wide linear range from 0.5 nM to 100 nM for CAP detection with a low detection limit of 57.9 pM (S/N = 3). With good selectivity and sensitivity, the PEC aptasensor was applied to the determination of CAP in spiked honey samples with satisfactory results, suggesting that the GQDs/TiO2 NTs photoelectrode has a promising application in constructing PEC sensor platform.
    [Abstract] [Full Text] [Related] [New Search]