These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. Author: Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, Wang T, Su J, Chen D, Mao C, Wang X. Journal: J Cell Mol Med; 2019 Apr; 23(4):2822-2835. PubMed ID: 30772948. Abstract: Peripheral nerve injury results in limited nerve regeneration and severe functional impairment. Mesenchymal stem cells (MSCs) are a remarkable tool for peripheral nerve regeneration. The involvement of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) in peripheral nerve regeneration, however, remains unknown. In this study, we evaluated functional recovery and nerve regeneration in rats that received hUCMSC-EV treatment after nerve transection. We observed that hUCMSC-EV treatment promoted the recovery of motor function and the regeneration of axons; increased the sciatic functional index; resulted in the generation of numerous axons and of several Schwann cells that surrounded individual axons; and attenuated the atrophy of the gastrocnemius muscle. hUCMSC-EVs aggregated to rat nerve defects, down-regulated interleukin (IL)-6 and IL-1β, up-regulated IL-10 and modulated inflammation in the injured nerve. These effects likely contributed to the promotion of nerve regeneration. Our findings indicate that hUCMSC-EVs can improve functional recovery and nerve regeneration by providing a favourable microenvironment for nerve regeneration. Thus, hUCMSC-EVs have considerable potential for application in the treatment of peripheral nerve injury.[Abstract] [Full Text] [Related] [New Search]