These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inclusion complex of saikosaponin-d with hydroxypropyl-β-cyclodextrin: Improved physicochemical properties and anti-skin cancer activity.
    Author: Hu SC, Lai YC, Lin CL, Tzeng WS, Yen FL.
    Journal: Phytomedicine; 2019 Apr; 57():174-182. PubMed ID: 30776588.
    Abstract:
    BACKGROUND: Saikosaponin-d (SSD) is a triterpene saponin isolated from Bupleurum plants. It has been shown to exhibit antioxidant, anti-inflammatory, and anticancer activities. However, its biomedical applications are limited by its poor water solubility. Cyclodextrins are highly water soluble oligosaccharide compounds which can form inclusion complexes with lipophilic drugs. PURPOSE: We complexed SSD with hydroxypropyl-β-cyclodextrin (HPBCD) in various ratios to form SSD-HPBCD inclusion complexes. The inclusion complexes were evaluated for their solubility, physicochemical properties and cytotoxic effects in cutaneous squamous cell carcinoma cells. METHODS: Surface morphology of pure SSD and SSD-HPBCD inclusion complexes was evaluated by scanning electron microscopy. Crystalline structure was determined by X-ray diffractometry. Intermolecular hydrogen bond formation between SSD and HPBCD was investigated by Fourier transform infrared spectroscopy. Human cutaneous squamous cell carcinoma HSC-1 cell viability was determined by the MTS assay, and cell apoptosis by the caspase 3/7 assay. Signal transduction pathways were investigated by Western blotting. RESULTS: SSD-HPBCD inclusion complexes showed greatly increased water solubility. This was associated with an improvement in physicochemical properties, including transformation of crystalline structure to amorphous form, and formation of hydrogen bonds between SSD and HPBCD. In addition, SSD-HPBCD inclusion complexes induced apoptosis in HSC-1 cells, and this was mediated through activation of MAPK and suppression of Akt-mTOR signaling pathways. CONCLUSION: SSD-HPBCD inclusion complex shows improvement in water solubility and physicochemical properties, and exhibits anticancer effects against cutaneous squamous cell carcinoma cells. Therefore, it may be a potential drug formulation for the treatment of skin cancer.
    [Abstract] [Full Text] [Related] [New Search]