These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stationary superstatistics distributions of trapped run-and-tumble particles.
    Author: Sevilla FJ, Arzola AV, Cital EP.
    Journal: Phys Rev E; 2019 Jan; 99(1-1):012145. PubMed ID: 30780275.
    Abstract:
    We present an analysis of the stationary distributions of run-and-tumble particles trapped in external potentials in terms of a thermophoretic potential that emerges when trapped active motion is mapped to trapped passive Brownian motion in a fictitious inhomogeneous thermal bath. We elaborate on the meaning of the non-Boltzmann-Gibbs stationary distributions that emerge as a consequence of the persistent motion of active particles. These stationary distributions are interpreted as a class of distributions in nonequilibrium statistical mechanics known as superstatistics. Our analysis provides an original insight on the link between the intrinsic nonequilibrium nature of active motion and the well-known concept of local equilibrium used in nonequilibrium statistical mechanics and contributes to the understanding of the validity of the concept of effective temperature. Particular cases of interest, regarding specific trapping potentials used in other theoretical or experimental studies, are discussed. We point out as an unprecedented effect, the emergence of new modes of the stationary distribution as a consequence of the coupling of persistent motion in a trapping potential that varies highly enough with position.
    [Abstract] [Full Text] [Related] [New Search]