These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: First Report of Leaf Blight Caused by Rhizoctonia solani AG 1B on Madagascar Periwinkle (Catharanthus roseus) in Italy.
    Author: Garibaldi A, Bertetti D, Gullino ML.
    Journal: Plant Dis; 2006 Oct; 90(10):1361. PubMed ID: 30780957.
    Abstract:
    Madagascar periwinkle (Catharanthus roseus), a plant belonging to the Apocynaceae family, is used for parks and gardens and sometimes grown in pots. At the end of the summer of 2005, a leaf blight was observed on plants in a public park of Torino. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Although lesions were not seen on the stem, affected plants often died leaving wide empty areas. Mycelia of the pathogen were often seen on and suspended between the leaves. Blight progressed from the leaves to the shoot tip. The diseased tissue was disinfected for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 μg/l streptomycin sulphate. A fungus with the morphological characters of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (4). The isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. These results are consistent with other reports on anastomosis reactions (2). Pairing was also made with AG 2, 3, 4, 5, 7, and 11, with no anastomoses observed between the isolates and testers. Sclerotia were subspheroid in shape and had a size of 1 mm, which indicated that this pathogen was in subgroup 1B (4). For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 7 days. Plants of C. roseus were grown in 3-liter containers (2 plants per pot) on a steam disinfested substrate (peat/ pomix/pine bark/clay). Artificial inoculation was carried out on 7-day-old plants by placing numerous fragments of PDA cultures on the leaves of the plants. Plants inoculated with PDA alone served as control treatments. Three replicates were used. Plants were maintained in a glasshouse at 20 to 25°C. The first symptoms, similar to those observed in the public park, developed 5 days after inoculation, and R. solani was consistently reisolated from infected plants. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on periwinkle in Italy. The same disease was reported in India (1) and the United States (3). References: (1) R. Balasubramanian and K. S. Bhama. Indian Phytopathol. 30:556, 1977. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. Pages 37-47 in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (3) A. K. Hagan and J. M. Mullen Plant Dis. 77:1169, 1993. (4) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.
    [Abstract] [Full Text] [Related] [New Search]