These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions. Author: Marn J, Chung M, Iljaž J. Journal: J Therm Biol; 2019 Feb; 80():94-105. PubMed ID: 30784494. Abstract: The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.[Abstract] [Full Text] [Related] [New Search]