These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery. Author: Khan S, Akhtar N, Minhas MU, Badshah SF. Journal: AAPS PharmSciTech; 2019 Feb 21; 20(3):119. PubMed ID: 30790143. Abstract: In the current study, cytocompatible in situ cross-linkable pH/thermo-dual responsive injectable hydrogels were prepared based on poly(N-isopropylacrylamide) and carboxymethyl chitosan, i.e., poly(CMCS-g-NIPAAm). The prepared formulations were aimed to be used as drug depot of 5-fluorouracil (5-FU) after subcutaneous administration in vivo. The phase transition from sol-gel state under physiologic temperature range was analyzed and confirmed by tube titling and optical transmittance measurements. The viscoelastic properties of gel formulations were confirmed by rheology determination via time sweep, temperature, and continuous ramp test. Oscillatory swelling cycles confirmed temperature effect and structural changes. pH and temperature sensitivity of dual responsive gels were analyzed at different pH and temperature programs. In vitro drug release profile displayed that developed formulations have the highest release in acidic pH at 25°C. The safety of blank gel formulations was evaluated against L929 cell lines via MTT assay and confirmed cytocompatibility with no detectable toxicity. In vitro cytotoxic potential of drug-loaded gels against HeLa and MCF-7 cancer cell lines confirmed that 5-FU has controlled cytotoxic potential in depot form in comparison to free 5-FU solution. The IC50 values for free 5-FU (21 ± 05 μg/ml and 18 ± 66 μg/ml) were found higher in comparison to the loaded form. The copolymer structure formation was confirmed by NMR and FTIR spectroscopic analysis. TG and DSC analysis proved the thermal stability and phase transition temperatures of pure and copolymer samples, while SEM analysis showed the porous nature of in situ formed hydrogels. It was concluded from the results that the developed formulations have pH/temperature sensitivity with potential of systemic and intratumoral controlled drug delivery properties.[Abstract] [Full Text] [Related] [New Search]