These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maternal high-sodium intake affects the offspring' vascular renin-angiotensin system promoting endothelial dysfunction in rats.
    Author: Santos-Rocha J, Lima-Leal GA, Moreira HS, Ramos-Alves FE, de Sá FG, Duarte GP, Xavier FE.
    Journal: Vascul Pharmacol; 2019 Apr; 115():33-45. PubMed ID: 30790705.
    Abstract:
    Perinatal sodium overload induces endothelial dysfunction in adult offspring, but the underlying mechanisms are not fully known. The involvement of tissue renin-angiotensin system on high sodium-programmed endothelial dysfunction was examined. Acetylcholine and angiotensin I and II responses were analyzed in aorta and mesenteric resistance arteries from 24-week-old male offspring of normal-salt (O-NS, 1.3% NaCl) and high-salt (O-HS, 8% NaCl) fed dams. COX-2 expression, O2- production and angiotensin converting enzyme (ACE) activity were determined. A separated O-HS was treated with losartan (15 mg kg-1/day) for eight weeks. Compared to O-NS, O-HS were normotensive. Acetylcholine-induced relaxation was impaired in O-HS arteries, which was improved by tempol, apocynin or indomethacin. The angiotensin I-induced contraction was greater in O-HS arteries, whereas the angiotensin II responses were unchanged. ACE activity, O2- production and COX-2 expression were increased in O-HS arteries. In this group, the increased O2- production was inhibited by apocynin or losartan. Chronic losartan decreased COX-2 expression and restored the endothelium-dependent vasodilation in O-HS. Our findings reiterate that perinatal sodium overload programs endothelial dysfunction in adult offspring through a blood pressure-independent mechanism. Our results also suggest that vascular angiotensin II is the main mediator of high sodium-programmed endothelial dysfunction, promoting COX-2 expression and oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]