These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Upregulated cyclin B1/CDK1 mediates apoptosis following 2-methoxyestradiol-induced mitotic catastrophe: Role of Bcl-XL phosphorylation. Author: Choi HJ, Zhu BT. Journal: Steroids; 2019 Oct; 150():108381. PubMed ID: 30797877. Abstract: 2-Methoxyestradiol is an endogenous nonpolar metabolite of 17β-estradiol with a strong antitubulin activity. Earlier we showed that 2-methoxyestradiol increases the level and activity of cyclin B1/CDK1, which subsequently induces mitotic prometaphase arrest. In the present study, we demonstrate that upregulation of cyclin B1/CDK1 is responsible for the increased phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-XL in 2-methoxyestradiol-induced, mitotically-arrested cancer cells. Additional analysis shows that only the increase in phosphorylation of Bcl-XL, but not Bcl-2, is associated with activation of the mitochondrial cell death pathway. We find that MAD2 is an important upstream mediator of the antitubulin function of 2-methoxyestradiol, resulting in activation of the MKK4-JNK1 pathway. JNK1 activation then leads to cyclin B1/CDK1 upregulation, which further increases Bcl-2 and Bcl-XL phosphorylation. Together, these results indicate that cyclin B1/CDK1 upregulation in cancer cells undergoing 2-methoxyestradiol-induced mitotic catastrophe causes apoptosis via Bcl-XL phosphorylation.[Abstract] [Full Text] [Related] [New Search]