These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth, structural and optical characterization of wurtzite GaP nanowires. Author: Maliakkal CB, Gokhale M, Parmar J, Bapat RD, Chalke BA, Ghosh S, Bhattacharya A. Journal: Nanotechnology; 2019 Jun 21; 30(25):254002. PubMed ID: 30802882. Abstract: Bulk gallium phosphide (GaP) crystallizes in the zinc-blende (ZB) structure and has an indirect bandgap. However, GaP nanowires (NWs) can be synthesized in the wurtzite (WZ) phase as well. The contradictory theoretical predictions and experimental reports on the band structure of WZ GaP suggest a direct or a pseudo-direct bandgap. There are only a few reports of the growth and luminescence from WZ and ZB GaP NWs. We first present a comprehensive study of the gold-catalyzed growth of GaP NWs via metalorganic vapor phase epitaxy on various crystalline and amorphous substrates. We optimized the growth parameters like temperature, pressure and reactant flow rates to grow WZ GaP NWs with minimal taper. These wires were characterized using electron microscopy, x-ray diffraction, Raman scattering and photoluminescence spectroscopy. The luminescence studies of bare GaP NWs and GaP/AlGaP core-shell heterostructures with WZ- and ZB-phase GaP cores suggest that the WZ-phase GaP has a pseudo-direct bandgap with weak near-band-edge luminescence intensity.[Abstract] [Full Text] [Related] [New Search]