These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO2 Separation with Crystal-Like Gas Selectivity.
    Author: Yu G, Zou X, Sun L, Liu B, Wang Z, Zhang P, Zhu G.
    Journal: Adv Mater; 2019 Apr; 31(15):e1806853. PubMed ID: 30803076.
    Abstract:
    Most metal-organic-framework- (MOF-) based hybrid membranes face the challenge of low gas permeability in CO2 separation. This study presents a new strategy of interweaving UiO-66 and PIM-1 to build freeways in UiO-66-CN@sPIM-1 membranes for fast CO2 transport. In this strategy, sPIM-1 is rigidified via thermal treatment to make polymer voids permanent, and concurrently polymer chains are mutually linked onto UiO-66-CN crystals to minimize interfacial defects. The pore chemistry of UiO-66-CN is kept intact in hybrid membranes, allowing full utilization of MOF pores and selective adsorption for CO2 . Separation results show that UiO-66-CN@sPIM-1 membranes possess exceptionally high CO2 permeability (15433.4-22665 Barrer), approaching to that of UiO-66-NH2 crystal (65-75% of crystal-derived permeability). Additionally, the CO2 /N2 permeation selectivity for a representative membrane (23.9-28.6) moves toward that of single crystal (24.6-29.6). The unique structure and superior CO2 /N2 separation performance make UiO-66-CN@sPIM-1 membranes promising in practical CO2 separations.
    [Abstract] [Full Text] [Related] [New Search]