These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection. Author: Ruze A, Chen BD, Liu F, Chen XC, Gai MT, Li XM, Ma YT, Du XJ, Yang YN, Gao XM. Journal: Clin Sci (Lond); 2019 Mar 15; 133(5):665-680. PubMed ID: 30804219. Abstract: Ischemic preconditioning (IPC) is an endogenous protection strategy against myocardial ischemia-reperfusion (I/R) injury. Macrophage migration inhibitory factor (MIF) released from the myocardium subjected to brief periods of ischemia confers cardioprotection. We hypothesized that MIF plays an essential role in IPC-induced cardioprotection. I/R was induced either ex vivo or in vivo in male wild-type (WT) and MIF knockout (MIFKO) mice with or without proceeding IPC (three cycles of 5-min ischemia and 5-min reperfusion). Indices of myocardial injury, regional inflammation and cardiac function were determined to evaluate the extent of I/R injury. Activations of the reperfusion injury salvage kinase (RISK) pathway, AMP-activated protein kinase (AMPK) and their downstream components were investigated to explore the underlying mechanisms. IPC conferred prominent protection in WT hearts evidenced by reduced infarct size (by 33-35%), myocyte apoptosis and enzymatic markers of tissue injury, ROS production, inflammatory cell infiltration and MCP1/CCR2 expression (all P<0.05). IPC also ameliorated cardiac dysfunction both ex vivo and in vivo These protective effects were abolished in MIFKO hearts. Notably, IPC mediated further activations of RISK pathway, AMPK and the membrane translocation of GLUT4 in WT hearts. Deletion of MIF blunted these changes in response to IPC, which is the likely basis for the absence of protective effects of IPC against I/R injury. In conclusion, MIF plays a critical role in IPC-mediated cardioprotection under ischemic stress by activating RISK signaling pathway and AMPK. These results provide an insight for developing a novel therapeutic strategy that target MIF to protect ischemic hearts.[Abstract] [Full Text] [Related] [New Search]