These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of Colletotrichum graminicola Isolates Resistant to Strobilurin-Related QoI Fungicides.
    Author: Avila-Adame C, Olaya G, Köller W.
    Journal: Plant Dis; 2003 Dec; 87(12):1426-1432. PubMed ID: 30812383.
    Abstract:
    Isolates of Colletotrichum graminicola were collected from annual bluegrass or bent grass turf in Japan and the United States, and their sensitivities to QoI fungicides (QoIs) as well as their cytochrome b sequences were characterized. Five isolates sampled from turf treated repeatedly with azoxystrobin were highly QoI resistant under both in vivo and in vitro test conditions. The nucleotide sequences of a large cytochrome b gene segment involving the binding site of QoIs were fully homologous for all resistant isolates and contained the G143A target site mutation known to confer QoI resistance in other pathogens. QoI-sensitive isolates collected prior to treatments with QoIs were more diverse with regard to their cytochrome b gene sequences and their phenotype responses to QoIs. All wild-type isolates retained a glycine in position 143 of cytochrome b. Three of the four QoI-sensitive isolates were, in addition, distinguished by leucines in positions 95, 130, and 141, which were exchanged to threonine in all resistant but also in one of the sensitive isolates. In addition to a more pronounced divergence of cytochrome b sequences, the sensitive wild-type isolates also were diverse with regard to the induction of alternative respiration in response to QoI action, as indicated by comparisons of QoI sensitivities displayed in the absence or presence of the alternative oxidase inhibitor salicylhydroxamic acid. These different phenotype responses expressed under in vitro test conditions had no or only a slight impact on anthracnose control in protective applications of azoxystrobin. Isolate responses in vitro were very similar for trifloxystrobin, indicating cross-resistance among the class of QoIs. Our results imply that C. graminicola falls into the class of pathogens with a potential for rapid selection of highly QoI-resistant phenotypes. Frequent monitoring of population sensitivities will be required to determine the status of population responses toward practical QoI resistance.
    [Abstract] [Full Text] [Related] [New Search]