These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Linking Binary Gene Relationships to Drivers of Renal Cell Carcinoma Reveals Convergent Function in Alternate Tumor Progression Paths. Author: Poehlman WL, Hsieh JJ, Feltus FA. Journal: Sci Rep; 2019 Feb 27; 9(1):2899. PubMed ID: 30814637. Abstract: Renal cell carcinoma (RCC) subtypes are characterized by distinct molecular profiles. Using RNA expression profiles from 1,009 RCC samples, we constructed a condition-annotated gene coexpression network (GCN). The RCC GCN contains binary gene coexpression relationships (edges) specific to conditions including RCC subtype and tumor stage. As an application of this resource, we discovered RCC GCN edges and modules that were associated with genetic lesions in known RCC driver genes, including VHL, a common initiating clear cell RCC (ccRCC) genetic lesion, and PBRM1 and BAP1 which are early genetic lesions in the Braided Cancer River Model (BCRM). Since ccRCC tumors with PBRM1 mutations respond to targeted therapy differently than tumors with BAP1 mutations, we focused on ccRCC-specific edges associated with tumors that exhibit alternate mutation profiles: VHL-PBRM1 or VHL-BAP1. We found specific blends molecular functions associated with these two mutation paths. Despite these mutation-associated edges having unique genes, they were enriched for the same immunological functions suggesting a convergent functional role for alternate gene sets consistent with the BCRM. The condition annotated RCC GCN described herein is a novel data mining resource for the assignment of polygenic biomarkers and their relationships to RCC tumors with specific molecular and mutational profiles.[Abstract] [Full Text] [Related] [New Search]