These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modified xanthan gum for crystal violet uptake: kinetic, isotherm, and thermodynamic behaviors.
    Author: Zheng M, Lian F, Zhu Y, Liu B, Chen Z, Zhang Y, Zheng B, Zhang L.
    Journal: Water Sci Technol; 2019 Jan; 79(1):165-174. PubMed ID: 30816873.
    Abstract:
    Modified xanthan gum (XG-AM-TTE) was employed as an adsorbent to study the adsorption behavior, thermodynamics and kinetics of crystal violet (CV) from an aqueous solution. Fourier transform infrared spectroscopy analysis indicates that the functional groups present in the adsorbent, such as carboxyl, ester and hydroxyl groups, are included on the external surface of the material, and these groups are potential active sites for interaction with CV. According to X-ray diffraction results, the structure of XG-AM-TTE after CV adsorption became more disordered, and the microstructure change is an indication of effective adsorption of CV to the surface, with CV becoming remarkably dispersed in the adsorbent according to the scanning electron microscopy observations. The adsorption kinetics and adsorption equilibrium were best described by the pseudo-second-order model and Freundlich isotherms, respectively. The thermodynamic parameters, as the Gibbs-free energy (ΔG), enthalpy (ΔH) and entropy (ΔS), indicated that the adsorption is a spontaneous, endothermic and entropy increase process. The maximum adsorption capacity of XG-AM-TTE was 183 ± 12 mg/g, suggesting that XG-AM-TTE is an efficient adsorbent.
    [Abstract] [Full Text] [Related] [New Search]