These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Silver-loaded nanoparticles affect ex-vivo mechanical behavior and mineralization of dentin. Author: Toledano M, Aguilera FS, Cabello I, Toledano-Osorio M, Osorio E, López-López MT, García-Godoy F, Lynch CD, Osorio R. Journal: Med Oral Patol Oral Cir Bucal; 2019 Mar 01; 24(2):e156-e164. PubMed ID: 30818307. Abstract: BACKGROUND: The aim was to evaluate the effect of silver loaded nanoparticles (NPs) application on the triboscopic, crystallographic and viscoelastic properties of demineralized dentin. Polymethylmetacrylate-based NPs and Ag loaded NPs were applied on demineralized dentin. MATERIAL AND METHODS: Treated and untreated surfaces were probed by a nanoindenter to test viscoelasticity, and by atomic force microscopy to test nanoroughness and collagen fibril diameter. X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging were also used. RESULTS: Dentin treated with Ag-NPs attained the lowest complex modulus, and the highest tan delta values after 7 days of storage. Dentin treated with undoped-NPs achieved the lowest nanoroughness and the greatest collagen bandwidths among groups. Crystals were identified as hydroxyapatite with the highest crystallographic maturity and crystallite size in dentin treated with undoped-NPs. Texture increased in all samples from 24 h to 7 d, except in dentin surfaces treated with Ag-NPs at 310 plane. Polyhedral, block-like, hexagonal or plate-like shaped apatite crystals constituted the bulk of minerals in dentin treated with Ag-NPs, after 7 d. Polyhedral or rounded/drop-like, and polymorphic in strata crystal apatite characterized the minerals when undoped-NPs were used, with more crystalline characteristics after 7 d than that found when Ag-NPs were applied. Ag-NPs application did not improve the mechanical performance of dentin and did not produce dentin remineralization. However, energy was dissipated through the dentin without showing stress concentration; contrary was occurring at dentin treated with undoped-NPs, that provoked bridge-like mineral deposits at the dentin surface. CONCLUSIONS: Ag-NPs application did not enhance the mechanical properties of cervical dentin, though the energy dissipation did not damage the dentin structure. Remineralization at dentin was not produced after Ag-NPs application, though improved crystallinity may lead to increase stability of the apatite that was generated at the dentin surface.[Abstract] [Full Text] [Related] [New Search]