These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamical scaling in the Ohmic spin-boson model studied by extended hierarchical equations of motion. Author: Wang Q, Gong Z, Duan C, Tang Z, Wu J. Journal: J Chem Phys; 2019 Feb 28; 150(8):084114. PubMed ID: 30823766. Abstract: Through a decomposition of the bath correlation function, the hierarchical equations of motion are extended to the Ohmic spin-boson model at zero temperature. For two typical cutoff functions of the bath spectral density, the rate kernel of spin dynamics is numerically extracted by a time-convolution equation of the average magnetic moment. A characteristic time is defined accordingly as the inverse of the zeroth-order moment of the rate kernel. For a given Kondo parameter in the incoherent regime, the time evolution of average magnetic moments gradually collapses onto a master curve after rescaling the time variable with the characteristic time. The rescaled spin dynamics is nearly independent of the cutoff frequency and the form of cutoff functions. For a given cutoff frequency, the characteristic time with the change of the Kondo parameter is fitted excellently as a function of the renormalized tunneling amplitude. Despite a significant difference in definition, our result is in good agreement with the characteristic time of the noninteracting blip approximation.[Abstract] [Full Text] [Related] [New Search]