These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The right ventricular response to lung resection.
    Author: McCall PJ, Arthur A, Glass A, Corcoran DS, Kirk A, Macfie A, Payne J, Johnson M, Kinsella J, Shelley BG.
    Journal: J Thorac Cardiovasc Surg; 2019 Aug; 158(2):556-565.e5. PubMed ID: 30826095.
    Abstract:
    OBJECTIVES: Lung cancer is a leading cause of cancer death and in suitable cases the best chance of cure is offered by surgery. Lung resection is associated with significant postoperative cardiorespiratory morbidity, with dyspnea and reduced functional capacity as dominant features. These changes are poorly associated with deterioration in pulmonary function and a potential role of right ventricular (RV) dysfunction has been hypothesized. Cardiovascular magnetic resonance imaging is a reference method for noninvasive assessment of RV function and has not previously been applied to this population. METHODS: We used cardiovascular magnetic resonance imaging to assess the RV response to lung resection. Cardiovascular magnetic resonance imaging with volume and flow analysis was performed on 27 patients preoperatively, on postoperative day 2 and at 2 months. Left ventricular ejection fraction and RV ejection fraction, the ratio of stroke volume to end systolic volume, pulmonary artery acceleration time, and distensibility of main and branch pulmonary arteries were studied. RESULTS: Mean ± standard deviation RV ejection fraction deteriorated from 50.5% ± 6.9% preoperatively to 45.6% ± 4.5% on postoperative day 2 and remained depressed at 44.9% ± 7.7% by 2 months (P = .003). The ratio of stroke volume to end systolic volume deteriorated from median 1.0 (quartile 1, quartile 3: 0.9, 1.2) preoperatively to median 0.8 (quartile 1, quartile 3: 0.7, 1.0) on postoperative day 2 (P = .011). On postoperative day 2 there was a decrease in pulmonary artery acceleration time and operative pulmonary artery distensibility (P < .030 for both). There were no changes in left ventricular ejection fraction during the study period (P = .621). CONCLUSIONS: These findings suggest RV dysfunction occurs following lung resection and persists 2 months after surgery. The deterioration in the ratio of stroke volume to end systolic volume suggests a mismatch between afterload and contractility. There is an increase in indices of pulsatile afterload resulting from the operative pulmonary artery.
    [Abstract] [Full Text] [Related] [New Search]