These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of propranolol and clonidine on bone marrow expression of hematopoietic cytokines following trauma and chronic stress. Author: Loftus TJ, Miller ES, Millar JK, Kannan KB, Alamo IG, Efron PA, Mohr AM. Journal: Am J Surg; 2019 Nov; 218(5):858-863. PubMed ID: 30827533. Abstract: BACKGROUND: Attenuating post-injury neuroendocrine stress abrogates persistent injury-associated anemia. Our objective was to examine the mechanisms by which propranolol and clonidine modulate this process. We hypothesized that propranolol and clonidine would decrease bone marrow expression of high-mobility group box-1 (HMGB1) and increase expression of stem cell factor (SCF) and B-cell lymphoma-extra large (Bcl-xL). METHODS: Male Sprague-Dawley rats were allocated to naïve control, lung contusion followed by hemorrhagic shock (LCHS), or LCHS plus daily chronic restraint stress (LCHS/CS) ±propranolol, ±clonidine. Day seven bone marrow expression of HMGB1, SCF, and Bcl-xL was assessed by polymerase chain reaction. RESULTS: Following LCHS, HMGB1 was decreased by propranolol (49% decrease, p = 0.012) and clonidine (54% decrease, p < 0.010). SCF was decreased following LCHS/CS, and was increased by propranolol (629% increase, p < 0.001) and clonidine (468% increase, p < 0.001). Bcl-xL was decreased following LCHS/CS, and was increased by propranolol (59% increase, p = 0.006) and clonidine (77% increase, p < 0.001). CONCLUSIONS: Following severe trauma, propranolol and clonidine abrogate persistent injury-associated anemia by modulating bone marrow cytokines, favoring effective erythropoiesis.[Abstract] [Full Text] [Related] [New Search]