These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selenoglycosides as Lectin Ligands: 77 Se-Edited CPMG-HSQMBC NMR Spectroscopy To Monitor Biomedically Relevant Interactions. Author: Raics M, Timári I, Diercks T, Szilágyi L, Gabius HJ, Kövér KE. Journal: Chembiochem; 2019 Jul 01; 20(13):1688-1692. PubMed ID: 30828921. Abstract: The fundamental importance of protein-glycan recognition calls for specific and sensitive high-resolution techniques for their detailed analysis. After the introduction of 19 F NMR spectroscopy to study the recognition of fluorinated glycans, a new 77 Se NMR spectroscopy method is presented for complementary studies of selenoglycans with optimised resolution and sensitivity, in which direct NMR spectroscopy detection on 77 Se is replaced by its indirect observation in a 2D 1 H,77 Se HSQMBC spectrum. In contrast to OH/F substitution, O/Se exchange allows the glycosidic bond to be targeted. As an example, selenodigalactoside recognition by three human galectins and a plant toxin is readily indicated by signal attenuation and line broadening in the 2D 1 H,77 Se HSQMBC spectrum, in which CPMG-INEPT long-range transfer ensures maximal detection sensitivity, clean signal phases, and reliable ligand ranking. By monitoring competitive displacement of a selenated spy ligand, the selective 77 Se NMR spectroscopy approach may also be used to screen non-selenated compounds. Finally, 1 H,77 Se CPMG-INEPT transfer allows further NMR sensors of molecular interaction to be combined with the specificity and resolution of 77 Se NMR spectroscopy.[Abstract] [Full Text] [Related] [New Search]