These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pro-urokinase: a study of its stability in plasma and of a mechanism for its selective fibrinolytic effect. Author: Pannell R, Gurewich V. Journal: Blood; 1986 May; 67(5):1215-23. PubMed ID: 3083889. Abstract: Highly purified pro-urokinase (pro-UK) or single-chain urokinase-type plasminogen activator (scu-PA) was treated with diisopropylfluorophosphate (1 mmol/L) to eliminate traces of two-chain UK activity. This preparation was found to retain a low activity against a chromogenic substrate (S2444), equivalent to 0.1% to 0.5% of the activity of its plasmin-activated derivative. Evidence is presented that the intrinsic activity of pro-UK (scu-PA) was sufficient to activate plasminogen on a fibrin plate or in buffer and was far more reactive against Lys-plasminogen than against Glu-plasminogen. The relative resistance of Glu-plasminogen to activation was overcome by the addition of lysine (25 mmol/L) to the reaction mixture. By contrast, in plasma, pro-UK (scu-PA) was stable and nonreactive for greater than 72 hours when incubated (37 degrees C). Pro-UK (scu-PA) did not form sodium dodecyl sulfate-stable inhibitor complexes, whereas complexation occurred rapidly with UK. Only at high concentrations of pro-UK (scu-PA) (greater than or equal to 250 IU/mL) did plasminogen activation in plasma occur. The relative inertness of pro-UK (scu-PA) in plasma, in contrast to its low-grade enzymatic activity in buffer, was attributed to the effect of inhibitors. The addition of EDTA or the removal of divalent cations by dialysis was associated with a lower threshold for nonspecific plasminogen activation by pro-UK (scu-PA) in plasma. Replacement of Ca++ but not other cations restored baseline conditions. In the presence of a clot, fibrin-selective plasminogen activation and clot lysis were triggered. Lysis was accompanied by less than 10% conversion of pro-UK (scu-PA) to two-chain UK, suggesting that the intrinsic activity of pro-UK (scu-PA) itself may have been responsible for fibrinolysis, although a contribution by the small amount of UK generated could not be excluded. Similarly, pro-UK (scu-PA) supported clot lysis for several days in the same plasma before the effect dissipated as a result of degradation to UK. When Glu-plasminogen in plasma was replaced by Lys-plasminogen, or when lysine was added to normal plasma, nonselective plasminogen activation and fibrinogenolysis occurred. It was concluded that under the experimental conditions, the fibrin specificity of pro-UK (scu-PA) can be explained by its selective activation of fibrin-bound plasminogen and is due to the latter's Lys-plasminogen-like conformation.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]