These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous Determination of Acrylamide and 5-Hydroxymethylfurfural in Heat-Processed Foods Employing Enhanced Matrix Removal-Lipid as a New Dispersive Solid-Phase Extraction Sorbent Followed by Liquid Chromatography-Tandem Mass Spectrometry.
    Author: Huang Y, Li C, Hu H, Wang Y, Shen M, Nie S, Chen J, Zeng M, Xie M.
    Journal: J Agric Food Chem; 2019 May 01; 67(17):5017-5025. PubMed ID: 30839206.
    Abstract:
    The goal of this study was to develop a method for simultaneous determination of acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) in heat-processed foods by liquid chromatography-tandem mass spectrometry analysis. Several cleanup methods for the quick, easy, cheap, effective, rugged, and safe (QuEChERS) protocol were investigated and compared: (a) dispersive solid-phase extraction (d-SPE) with Enhanced Matrix Removal-Lipid (EMR-Lipid), (b) d-SPE with primary secondary amine, (c) without the cleanup step, and (d) cleanup with n-hexane. It is the first time that EMR-Lipid sorbent has been used as a d-SPE material to detect AA and 5-HMF in heat-processed foods, and among the four cleanup methods, the EMR-Lipid method provided the best cleanup of co-extracted matrix interferences and the highest extraction efficiency. Validation experiments were carried out for the method using EMR-Lipid as the d-SPE sorbent. Excellent linearity ( R2 > 0.999) was achieved, and the limits of detection (LODs) of AA and 5-HMF were 2.5 and 12.5 μg/kg, respectively. The recoveries of AA and 5-HMF levels obtained were in the ranges of 87.3-103.3 and 83.2-104.3%, with precision [relative standard deviations (RSDs)] of 1.2-6.8 and 1.4-7.4% ( n = 3), respectively. The method is accurate and reliable and was successfully applied to analyze the AA and 5-HMF in eight categories of Chinese heat-processed foods.
    [Abstract] [Full Text] [Related] [New Search]