These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature. Author: Raju M, Yagil A, Soumyanarayanan A, Tan AKC, Almoalem A, Ma F, Auslaender OM, Panagopoulos C. Journal: Nat Commun; 2019 Mar 06; 10(1):696. PubMed ID: 30842413. Abstract: The topological Hall effect (THE) is the Hall response to an emergent magnetic field, a manifestation of the skyrmion Berry-phase. As the magnitude of THE in magnetic multilayers is an open question, it is imperative to develop comprehensive understanding of skyrmions and other chiral textures, and their electrical fingerprint. Here, using Hall-transport and magnetic-imaging in a technologically viable multilayer film, we show that topological-Hall resistivity scales with the isolated-skyrmion density over a wide range of temperature and magnetic-field, confirming the impact of the skyrmion Berry-phase on electronic transport. While we establish qualitative agreement between the topological-Hall resistivity and the topological-charge density, our quantitative analysis shows much larger topological-Hall resistivity than the prevailing theory predicts for the observed skyrmion density. Our results are fundamental for the skyrmion-THE in multilayers, where interfacial interactions, multiband transport and non-adiabatic effects play an important role, and for skyrmion applications relying on THE.[Abstract] [Full Text] [Related] [New Search]