These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Resolving Phylogenetic Relationships for Streptococcus mitis and Streptococcus oralis through Core- and Pan-Genome Analyses. Author: Velsko IM, Perez MS, Richards VP. Journal: Genome Biol Evol; 2019 Apr 01; 11(4):1077-1087. PubMed ID: 30847473. Abstract: Taxonomic and phylogenetic relationships of Streptococcus mitis and Streptococcus oralis have been difficult to establish biochemically and genetically. We used core-genome analyses of S. mitis and S. oralis, as well as the closely related species Streptococcus pneumoniae and Streptococcus parasanguinis, to clarify the phylogenetic relationships between S. mitis and S. oralis, as well as within subclades of S. oralis. All S. mitis (n = 67), S. oralis (n = 89), S. parasanguinis (n = 27), and 27 S. pneumoniae genome assemblies were downloaded from NCBI and reannotated. All genes were delineated into homologous clusters and maximum-likelihood phylogenies built from putatively nonrecombinant core gene sets. Population structure was determined using Bayesian genome clustering, and patristic distance was calculated between populations. Population-specific gene content was assessed using a phylogenetic-based genome-wide association approach. Streptococcus mitis and S. oralis formed distinct clades, but species mixing suggests taxonomic misassignment. Patristic distance between populations suggests that S. oralis subsp. dentisani is a distinct species, whereas S. oralis subsp. tigurinus and subsp. oralis are supported as subspecies, and that S. mitis comprises two subspecies. None of the genes within the pan-genomes of S. mitis and S. oralis could be statistically correlated with either, and the dispensable genomes showed extensive variation among isolates. These are likely important factors contributing to established overlap in biochemical characteristics for these taxa. Based on core-genome analysis, the substructure of S. oralis and S. mitis should be redefined, and species assignments within S. oralis and S. mitis should be made based on whole-genome analysis to be robust to misassignment.[Abstract] [Full Text] [Related] [New Search]