These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immunochromatographic fluorometric determination of clenbuterol with enhanced sensitivity.
    Author: Zeng Y, Liang D, Zheng P, Peng T, Sun S, Mari GM, Jiang H.
    Journal: Mikrochim Acta; 2019 Mar 08; 186(4):225. PubMed ID: 30848375.
    Abstract:
    A method is described to enhance the sensitivity of an immunochromatographic assay for clenbuterol (CLE) by making use of dually-labeled gold nanoparticles (GNPs), background fluorescence blocking, and immunomagnetic separation. The GNPs were labeled with biotinylated antibody and streptavidin, respectively, and dually labeled GNPs were obtained via the biotin-streptavidin interaction to amplify the detection signal. The fluorescent signal was blocked by dually labeled GNPs and decreased as the dually labeled GNPs aggregation increases on nitrocellulose membrane, which derived from fluorescent polyvinylchloride card. However, fluorescence (measured at excitation/emission wavelengths of 518/580 nm) recovers when CLE reacts with dually labeled GNPs. Immunomagnetic separation was first applied for sample pretreatment. This can offset the matrix effect and improves the sensitivity and accuracy of the assay. Under the optimal conditions, the limits of detection of CLE visually were 0.25 μg·L-1. In addition, clenbuterol can be quantified in swine urine with a 0.03 μg·L-1 detection limit. This is 60-fold lower than current immunochromatography. Response is linear in the 0.06-0.59 μg·L-1 concentration range, and the recoveries from spiked swine urine range from 81 to 115%." Graphical abstract Schematic presentation of the strategies for improving sensitivity of immunochromatographic assay. It includes immunomagnetic separations, dually-labeled gold nanoparticles and background fluorescence blocking. The assay was applied to detect clenbuterol (CLE) in swine urine with an excellent performance.
    [Abstract] [Full Text] [Related] [New Search]