These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics.
    Author: Wang M, Hu M, Liu J, Guo C, Peng D, Jia Q, He L, Zhang Z, Du M.
    Journal: Biosens Bioelectron; 2019 May 01; 132():8-16. PubMed ID: 30851495.
    Abstract:
    We designed and synthesized a novel covalent organic framework (COF) by condensation polymerization of 1,3,6,8-tetrakis(4-formylphenyl)pyrene and melamine through imine bonds (represented by Py-M-COF). The basic characterizations revealed that the Py-M-COF not only exhibited an extended π-conjugation framework, a large specific surface area (495.5 m2 g-1), big pore cavities, and nanosheet-like structure but also possessed rich functional groups, such as C˭C, C˭N, C˭O, and NH2. These features endowed the Py-M-COF with high charge carrier mobility, further improving the strong immobilization of DNA aptamer strands via π-π stacking interaction and electrostatic interaction. As such, the Py-M-COF-based electrochemical aptasensors are ultrasensitive in detecting different antibiotics, including enrofloxacin (ENR) and ampicillin (AMP), yielding extremely low detection limits of 6.07 and 0.04 fg mL-1 (S/N = 3) toward ENR and AMP, respectively, along with other excellent sensing performances. This biosensing platform based on Py-M-COF has potential applications for the sensitive detection of antibiotics or other analytes by replacing the corresponding aptamers.
    [Abstract] [Full Text] [Related] [New Search]