These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human MiR-4660 regulates the expression of alanine-glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis. Author: Tu X, Zhao Y, Li Q, Yu X, Yang Y, Shi S, Ding Z, Miao Y, Zou Z, Wang X, Jiang J, Du D. Journal: Clin Exp Nephrol; 2019 Jul; 23(7):890-897. PubMed ID: 30852714. Abstract: BACKGROUND: Dysfunction of oxalate synthesis can cause calcium oxalate stone disease and inherited primary hyperoxaluria (PH) disorders. PH type I (PH1) is one of the most severe hyperoxaluria disorders, which results in urolithiasis, nephrocalcinosis, and end-stage renal disease. Here, we sought to determine the role of microRNAs in regulating AGXT to contribute to the pathogenesis of mutation-negative idiopathic oxalosis. METHODS: We conducted bioinformatics to search for microRNAs binding to AGXT, and examined the expression of the highest hit (miR-4660) in serum samples of patients with oxalosis, liver tissue samples, and determined the correlation and regulation between the microRNA and AGXT in vitro. RESULTS: MiR-4660 expression was downregulated in patients with oxalosis compared with healthy controls (84.03 copies/µL vs 33.02 copies/µL, P < 0.0001). Moreover, miR-4660 epigenetically decreased the expression of AGT in human liver tissues (Rho = - 0543, P = 0.037). Overexpression of miR-4660 in HepG2 and L02 cell lines led to dysregulation of AGXT at both the mRNA (by 71% and 81%, respectively; P < 0.001) and protein (by 49% and 42%, respectively; P < 0.0001) levels. We confirmed the direct target site of miR-4660 binding to the 3'UTR of AGXT by a luciferase assay. CONCLUSION: MiR-4660 is probably a new biomarker for mutation-negative idiopathic oxalosis by regulating the post-transcription of AGXT, providing a potential treatment target of mutation-negative idiopathic oxalosis.[Abstract] [Full Text] [Related] [New Search]