These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats.
    Author: Ekström G, Cronholm T, Ingelman-Sundberg M.
    Journal: Biochem J; 1986 Feb 01; 233(3):755-61. PubMed ID: 3085654.
    Abstract:
    In order to distinguish between the mechanism of microsomal ethanol oxidation and hydroxyl-radical formation, the rate of cytochrome P-450 (P-450)-dependent oxidation of dimethyl sulphoxide (Me2SO) was determined in the presence and in the absence of iron-chelating compounds, in liver microsomes from control, ethanol- and phenobarbital-treated rats. Ethanol treatment resulted in a specific increase (3-fold) of the microsomal ethanol oxidation and NADPH consumption per nmol of P-450. A form of P-450 was purified to apparent homogeneity from the ethanol-treated rats and characterized with respect of amino acid composition and N-terminal amino acid sequence. Specific ethanol induction of a cytochrome P-450 species having a catalytic-centre activity of 20/min for ethanol and consuming 30 nmol of NADPH/min could account for the results observed with microsomes. Phenobarbital treatment caused 50% decrease in the rate of ethanol oxidation and NADPH oxidation per nmol of P-450. The rate of oxidation of the hydroxyl-radical scavenger Me2SO was increased 3-fold by ethanol or phenobarbital treatment when expressed on a per-mg-of-microsomal-protein basis, but the rate of Me2SO oxidation expressed on a per-nmol-of-P-450 basis was unchanged. Addition of iron-chelating agents to the three different types of microsomal preparations caused an 'uncoupling' of the electron-transport chain accompanied by a 4-fold increase of the rate of Me2SO oxidation. It is concluded that ethanol treatment results in the induction of P-450 forms specifically effective in ethanol oxidation and NADPH oxidation, but not in hydroxyl-radical production, as detected by the oxidation of Me2SO.
    [Abstract] [Full Text] [Related] [New Search]