These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil.
    Author: Li W, Chan LS, Khatami M, Rockey JH.
    Journal: Biochim Biophys Acta; 1986 May 28; 857(2):198-208. PubMed ID: 3085711.
    Abstract:
    myo-Inositol transport by retinal capillary pericytes in culture was characterized. The major myo-inositol transport process was sodium-dependent, ouabain-sensitive, and saturable at 40 mM, indicating a carrier-mediated process. The sodium ion concentration required to produce one-half the maximal rate of myo-inositol uptake ([Na+]0.5) did not show dependence on the external myo-inositol concentration (22.3 mM sodium for 0.005 mM myo-inositol; 18.2 mM sodium for 0.05 mM myo-inositol). myo-Inositol transport was an energy-dependent, active process functioning against a myo-inositol concentration gradient. The kinetics of the sodium-dependent system fitted a 'velocity type' co-transport model where binding of sodium ion to the carrier increased the velocity (Vmax 28 to 313 pmol myo-inositol/micrograms DNA per 20 min when [Na+] varied from 9 to 150 mM) but not the affinity for myo-inositol (Km 0.92 to 0.83 mM when [Na+] varied from 9 to 150 mM). Metabolizable hexoses (D-glucose or D-galactose; greater than 5 mM) inhibited myo-inositol uptake. Dixon-plot analysis indicated that the inhibition was non-competitive with a Ki of 22.7 mM for D-glucose and 72.6 mM for D-galactose. The inhibition was significantly reversed by Sorbinil (0.1 mM), an aldose reductase inhibitor. In contrast, high concentrations of non-metabolizable hexoses (L-glucose, 3-O-methyl-D-glucose), or partially metabolizable 2-deoxy-D-glucose, did not significantly inhibit myo-inositol uptake. The inhibitory effect of D-glucose or D-galactose on myo-inositol transport appeared to be related to glucose or galactose metabolism via the polyol pathway.
    [Abstract] [Full Text] [Related] [New Search]