These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Effect of Standardised Flower Extracts of Sorbus aucuparia L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro.
    Author: Olszewska MA, Kolodziejczyk-Czepas J, Rutkowska M, Magiera A, Michel P, Rejman MW, Nowak P, Owczarek A.
    Journal: Oxid Med Cell Longev; 2019; 2019():9746358. PubMed ID: 30863484.
    Abstract:
    Polyphenol-rich plant extracts might alleviate the negative impact of oxidative stress and inflammation, but careful phytochemical standardisation and evaluation of various mechanisms are required to fully understand their effects. In this context, flower extracts of Sorbus aucuparia L.-a traditional medicinal plant-were investigated in the present work. The LC-MS/MS profiling of the extracts, obtained by fractionated extraction, led to the identification of 66 constituents, mostly flavonols (quercetin and sexangularetin glycosides with dominating isoquercitrin), pseudodepsides of quinic and shikimic acids (prevailing isomers of chlorogenic acid and cynarin), and flavanols (catechins and proanthocyanidins). Minor extract components of possible chemotaxonomic value were flavalignans (cinchonain I isomers) and phenylamides (spermidine derivatives). As assessed by HPLC-PDA and UV-spectrophotometric studies, the extracts were polyphenol-abundant, with the contents up to 597.6 mg/g dry weight (dw), 333.9 mg/g dw, 382.0 mg/g dw, and 169.0 mg/g dw of total phenolics, flavonoids, proanthocyanidins, and caffeoylquinic acids, respectively. Their biological in vitro effects were phenolic-dependent and the strongest for diethyl ether, ethyl acetate, and n-butanol fractions of the methanol-water (7 : 3, v/v) extract. The extracts showed significant, concentration-dependent ability to scavenge in vivo-relevant radical/oxidant agents (O2 ∙-, OH, H2O2, ONOO-, NO, and HClO) with the strongest effects towards OH, ONOO-, HClO, and O2 ∙- (compared to ascorbic acid). Moreover, the extracts efficiently inhibited lipoxygenase and hyaluronidase (compared to indomethacin) but were inactive towards xanthine oxidase. At in vivo-relevant levels (1-5 μg/mL), they also effectively protected human plasma components (proteins and lipids) against ONOO--induced oxidative damage (reduced the levels of 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and normalised/enhanced the total nonenzymatic antioxidant capacity of plasma. In cytotoxicity tests, the extracts did not affect the viability of human PBMCs and might be regarded as safe. The results support the application of the extracts in the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes.
    [Abstract] [Full Text] [Related] [New Search]