These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae).
    Author: Jing L, Zhaoqun L, Zongxiu L, Xiaoming C, Lei B, Zhaojun X, Chen Z.
    Journal: Arch Insect Biochem Physiol; 2019 May; 101(1):e21545. PubMed ID: 30869176.
    Abstract:
    Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae) are sibling pest species that co-occur on tea plants. The sex pheromone components of both species contain (Z,Z,Z)-3,6,9-octadecatriene and (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene. E. obliqua has (Z,Z)-3,9-cis-6,7-epoxy-nonadecadiene as an additional sex pheromone component, which ensures reproductive segregation between the two species. To ascertain the detection mechanism of olfactory organs for sex pheromone components of E. grisescens and E. obliqua, we applied scanning electron microscopy and single sensillum recording to compare antennal morphology and sensillum physiology in the two species. There was no apparent morphological difference between the antennae of the two species. Both species responded similarly to all three sex pheromone components, including, E. obliqua specific component. The distribution patterns of antennal sensilla trichodea differed between the two species. Sex pheromone olfactory sensing in these sibling species appears to be determined by the density of different types of olfactory sensing neurons. Dose-dependent responses of sensilla trichodea type 1 to (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene, the most abundant component, showed an "all or none" pattern and the other two components showed sigmoidal dose-response curves with a half threshold of 10-4 (dilution equal to the concentration of 10 μg/μl). These results suggest that the major sex pheromone component functions as an on-off controller while secondary components function as modulators during olfactory transmission to the primary olfactory center.
    [Abstract] [Full Text] [Related] [New Search]