These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The inhibitor of interleukin-3 receptor protects against sepsis in a rat model of cecal ligation and puncture.
    Author: Hu J, Tang Z, Xu J, Ge W, Hu Q, He F, Zheng G, Jiang L, Yang Z, Tang W.
    Journal: Mol Immunol; 2019 May; 109():71-80. PubMed ID: 30870654.
    Abstract:
    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. There are multiple cytokines involved in the process of sepsis. As an important upstream cytokine in inflammation, Interleukin-3 (IL-3) plays a crucial role during sepsis, however, its exact role is unclear. The purpose of this study is to discuss the role of IL-3 and its receptor in cecal ligation and puncture (CLP)-induced sepsis in a rat model. The Cluster of Differentiation 123 (CD123, IL-3 receptor alpha chain, IL-3Rac) antibody (anti-CD123) was used to directly target IL-3's receptor and alleviate the effect of IL-3 in the CLP + anti-CD123 group during the early stage of sepsis. CLP was performed in the CLP and CLP + anti-CD123 groups. The time points of observation included 12 h, 24 h, and 5d after the operation. The results showed that the rats in the CLP + anti-CD123 group had lower levels of lactate, serum tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6), and also exhibited a higher core temperature, mean arterial pressure (MAP), Oxygenation Index (PO2/FiO2), and end-tidal carbon dioxide (ETCO2) and serum Interleukin-10 (IL-10) levels after CLP than those in the CLP group. Additionally, administration of anti-CD123 led to a stable down-regulation of tyrosine phosphorylation of the IL-3 receptor, a decline in phosphorylation of the Janus kinase 2 (JAK2) protein, and the signal transduction and activation of transcription 5 (STAT5) proteins in lung tissues. Meanwhile, the study revealed that treatment of anti-CD123 can markedly attenuate histological damages in lung and kidney tissues, improve sublingual microcirculation, and prolong survival post sepsis. In conclusion, anti-CD123 reduces mortality and alleviates organ dysfunction by restraining the JAK2-STAT5 signaling pathway and reduces serum cytokines in the development of early sepsis in a rat model induced by CLP.
    [Abstract] [Full Text] [Related] [New Search]